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Abstract: In this paper, disturbance observer based quasi full information feedback control law
of linear systems is proposed, where the feedback control law is with direct measurement of
the plant states and the estimation of the disturbances. It shows that the system under control
is input to state stable from the derivative of the disturbances to the system states provided
that the given matching condition is satisfied. Furthermore, the effect of the disturbances can
be compensated entirely if the disturbance is constant. The proposed scheme is verified by a
simple numerical example and the stability control of four-wheel steering vehicle.
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1. INTRODUCTION

The ubiquitous existence of disturbances or perturbations
requires the consideration of robust control strategies. In
general, there are two intuitive ways to deal with distur-
bances or perturbations of systems. One tries to attenu-
ate the effects of the disturbances or perturbations, for
example, loop-shaping, robust control (Doyle et al., 1992;
Zhou et al., 1996). The other designs disturbance observers
based controller (DOBC) or active disturbances rejection
controllers (ADRC) to compensate the disturbances or
perturbations directly (Han, 1995; Guo and Cao, 2013; Li
et al., 2014; Chen et al., 2016). Compared with robust
control, DOBC or ADRC can “reject” disturbances or
perturbations without scarifying its nominal performance.

In general, the existing disturbance observer based con-
troller are confined to uncertain systems which satisfy a
matching condition (Gutman and Letmann, 1976; Barmish
and Leitmann, 1982). The matching condition refers to
the uncertainties or perturbations acting on the system
via the same channel as control input. Although some
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schemes (Huang and Xue, 2014; Yang et al., 2011) claimed
that mismatched disturbances or perturbations can be
coped with, it either requires to transform the mismatched
disturbances or perturbations into the matched one first
(Chen et al., 2016) or counteracts the mismatched distur-
bances or perturbations from the output channel only.

In this paper disturbance observer based feedback control
law of linear systems is proposed, in which not only state
feedback but also disturbance feedback are involved. We
name it as quasi full information feedback control since
only the estimation of disturbances is adopted. We show
that the error of observer is input to state stable from the
derivative of disturbances to system states. In particular,
the error is zero while the disturbance is constant or
goes to constant after a while, no matter how big the
magnitude of the disturbances is. It allows to attenuate
or compensate the effect of disturbances if a matching
condition is satisfied.

The remainder of the paper is organized as follows. Section
2 formulates the problem. The properties of disturbance
observer and the properties of systems under control are
provided in Section 3 and Section 4, respectively. Two
simulation examples are given in Section 5 to demonstrate
the effectiveness of the proposed scheme. The paper is
concluded with a short summary.

2. PROBLEM SETUP

Consider the following linear time-invariant (LTI) systems
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ẋ = Ax+Bu+Bww, (1)

where x ∈ Rnx is the system state, u ∈ Rnu the control
input, w ∈ Rnw the uncertainty. The term w refers to
exogenous disturbances, and differences or errors between
its model and reality.

For system (1), the following state-space disturbance ob-
server (Chen et al., 2000; Chen, 2004; Yang et al., 2011)
is designed

{

ṗ = −LBw(p+ Lx)− L(Ax+Bu),

ŵ = p+ Lx,
(2)

where ŵ is an estimate of the disturbance, p is an auxiliary
variable, and L is the observer gain to be designed. Assume
that the system state is measurable.

A composite linear control law is proposed

u = Kx+Kwŵ (3)

where K is a state feedback control gain, Kw is the
disturbance compensation gain. The aim of designing Kw

is to eliminate or reduce the effect of the disturbances on
the system. Note that the composite linear control law (3)
is consisted of the information of system state x and the
estimate of the error w. Thus, it is a quasi full information
control law.

In order to guarantee stability of closed-loop systems, the
following assumptions are made:

Assumption 1. The derivative of w(t) is piecewise con-
tinuous and ‖ẇ(t)‖ ≤ α for all t ≥ 0, where α > 0 is a
constant.

Assumption 2. (A,B) is stabilizable.

3. PROPERTIES OF DISTURBANCE OBSERVERS

The ultimate bounded property of the disturbance ob-
server (2) is concluded by the following theorem.

Theorem 1. Suppose that Assumption 1 and Assump-
tion 2 are satisfied for system (1). Then, there exist M ≥ 1
and β < 0 such that the disturbance estimate ŵ(t) yielded
by the disturbance observer (2) can asymptotically track
the disturbances w(t) with the ultimate bound error −αM

β

if the observer gain L is chosen such that −LBw is Hur-
witz.

Proof 1. The disturbance estimation error of the distur-
bance observer (2) is defined as

e = ŵ − w. (4)

Combining system (1) and disturbance observer (2), the
dynamics of the disturbance estimation error is

ė = ˙̂w − ẇ

=ṗ+ Lẋ− ẇ

=− LBwŵ − L(Ax+Bu)

+ L(Ax+Bu+Bww) − ẇ

=− LBw(ŵ − w)− ẇ

=− LBwe − ẇ.

(5)

The solution of Eq.(5) is

e(t) = e−LBwte(0)−

∫ t

0

e−LBw(t−τ)ẇdτ. (6)

Due to Assumption 1, we know that

‖e(t)‖ ≤ ‖e−LBwte(0)‖+

∥

∥

∥

∥

∫ t

0

e−LBw(t−τ)ẇdτ

∥

∥

∥

∥

≤ ‖e−LBwte(0)‖+ α

∫ t

0

‖e−LBw(t−τ)‖dτ.

(7)

As −LBw is Hurwitz, there exist M ≥ 1 and β < 0
(Blondel and Megretski, 2004) such that

‖e−LBwt‖ ≤ Meβt, ∀t ≥ 0.

Then,

‖e(t)‖ ≤ Meβt‖e(0)‖+ α

∫ t

0

Meβ(t−τ)dτ

= Meβt‖e(0)‖ −
αM

β

(

1− eβt
)

= M

(

‖e(0)‖+
α

β

)

eβt −
αM

β
.

(8)

As β < 0, α > 0 and M ≥ 1, ‖e(t)‖ is bounded.
Furthermore, as t → ∞,

‖e(t)‖ → −
αM

β
. (9)

This implies that the disturbance estimate of the distur-
bance observer can asymptotically track the disturbance
with an ultimate bounded error of estimate.

Remark 1. Denote ϑ(t) := M
(

‖e(0)‖+ α
β

)

eβt − αM
β

.

Note that ϑ(t) is monotonically decreasing with t. Thus,
maxt≥0 ‖e(t)‖ = M‖e(0)‖ and mint≥0 ‖e(t)‖ = −αM

β
.

Remark 2. Eq.(9) shows that the error of estimate as
t → ∞ is determined by ‖ẇ‖ and the gain L.

Corollary 1. Suppose that Assumption 1 and Assump-
tion 2 are satisfied for system (1), and lim

t→∞
ẇ(t) = 0. Then,

the disturbance estimates ŵ yielded by the disturbance
observer (2) can asymptotically track the disturbance w
without error if the observer gain matrix L is chosen such
that −LBw is Hurwitz.

Proof 2. In terms of Theorem 1, ‖e(t)‖ is bounded for all
t ≥ 0. Without loss of generality, suppose that ‖e(t)‖ ≤ S
for all t ≥ 0. As lim

t→∞
ẇ(t) = 0, for a given ε > 0, there

exists T0 such that ‖ẇ(t)‖ ≤ − εβ
2M for all t ≥ T0. For

simplification, denote h := − εβ
2M .

The solution of Eq.(5) is

e(t) = e−LBw(t−T0)e(T0)−

∫ t

T0

e−LBw(t−τ)ẇdτ. (10)

As −LBw is Hurwitz and ‖ẇ(t)‖ ≤ h,

‖e(t)‖ ≤ ‖e−LBw(t−T0)‖‖e(T0)‖+ h

∫ t

T0

‖e−LBw(t−τ)‖dτ

≤ Meβ(t−T0)‖e(T0)‖ + hM

∫ t

T0

eβ(t−τ)dτ

≤ MSeβ(t−T0) −
hM

β

(

1− eβ(t−T0)
)

= −
hM

β
+

(

MS −
hM

β

)

eβ(t−T0)

(11)

In terms of h = − εβ
2M , −hM

β
≤ ε

2 . Furthermore, while

t ≥ T0 +
1
β
ln
(

ε
2MS+ε

)

,
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Figure 1. Diagram of system dynamics

(

MS −
hM

β

)

eβ(t−T0) ≤
ε

2
. (12)

Thus, for any ε > 0, there exists

T := max

{

T0, T0 +
1

β
ln

(

ε

2MS + ε

)}

such that for all t ≥ T ,

‖e(t)‖ ≤ ε. (13)

Therefore, lim
t→∞

e(t) = 0.

4. PROPERTIES OF SYSTEMS

Combining system (1), the quasi full information control
law (3) and the dynamics of the disturbance estimation
error (5), the closed-loop system is
[

ẋ
ė

]

=

[

A+BK BKw

0 −LBw

] [

x
e

]

+

[

BKw +Bw 0
0 −1

] [

w
ẇ

]

(14)
The diagram of system dynamics of the closed-loop sys-
tems Eq. (14) is referred to Fig.1, where w and ẇ are
looked upon as separated disturbance inputs.

A matching condition is required in order to guarantee
the existence of Kw. Here the matching condition refers
to that the disturbance/uncertainty enters a system via
the same channels as control inputs, or the disturbances
can be transformed into the same channels as the control
inputs by the change of coordinate (Chen et al., 2016).

Assumption 3.

R(Bw) ⊆ R(B)

where R(M) denotes the range (column) space of M .

In other words, rank [B] = rank [B Bw]. To the opinion of
system theory, the assumption means that there exists at
least a control input which stays in the same channel of a
disturbance input, and tries to cancel out the effect of the
disturbance input.

Theorem 2. Suppose that Assumption 1-3 are satisfied
for system (1). If K, L and Kw are chosen such that

(1) both −LBw and A+BK are Hurwitz,
(2) BKw +Bw = 0.

Then,

(a) system (1) under the quasi full information feedback
control law (3) is input-to-state stable (ISS) from ẇ
to state x,

(b) system state x(t) is bounded which is proportional to
‖ẇ(t)‖∞.

Proof 3. (a) In terms of BKw +Bw = 0, Eq.(14) can be
rewritten as

[

ẋ
ė

]

=

[

A+BK BKw

0 −LBw

] [

x
e

]

+

[

0
−1

]

ẇ. (15)

Since both −LBw and A+BK are Hurwitz, the matrix

[

A+BK BKw

0 −LBw

]

is Hurwitz as well. Thus, the closed-loop system is input-
to-state stable (Khalil, 2002) from ẇ to state x.

(b) Since the closed-loop system (14) is input-to-state
stable, there exist KL function β(., .) and K function γ(.)
such that

∥

∥

∥

∥

[

x(t)
e(t)

]∥

∥

∥

∥

≤ β

(∥

∥

∥

∥

[

x(0)
e(0)

]∥

∥

∥

∥

, t

)

+ γ

(

sup
0≤τ≤t

‖ẇ‖

)

, t ≥ 0.

Furthermore, for ‖ẇ‖ ≤ α, ‖x(t)‖ is bounded for all t ≥ 0
(Khalil, 2002) and the bound is not related to the value of
the amplitude of w(t).

The system (1) is ISS from ẇ to x since the dependency of
the state on w is eliminated by Kw and dependency of the
state on ẇ is made due to introduction of e for analysis
purpose.

Remark 3. In terms of Theorem 2, system state x(t) will
converge to a disk centered at the equilibrium while t goes
to infinity. The radius of the dish is determined by the
gain matrices K, Kw and L, and the maxt≥0 ‖ẇ(t)‖, but
not related to ‖w(t)‖. That is, from standpoint of theory,
Theorem 2 guarantees that system state x(t) will converge
to somewhere even if ‖w(t)‖ is unbounded.

Corollary 2. Suppose that Assumption 1-3 are satisfied
for system (1), and lim

t→∞
ẇ(t) = 0. If K, L and Kw are

chosen such that

(1) both −LBw and A+BK are Hurwitz,
(2) BKw +Bw = 0.

Then, lim
t→∞

x(t) = 0, i.e., the effect of the disturbance is

eliminated as t goes to infinity.

Proof 4. Without loss of generality, assume that ‖x(t)‖ ≤
H with H > 0 as x(t) is bounded. Since A+BK is Hurwitz,
there exist M0 ≥ 1 and β0 < 0 such that

∥

∥eA+BK
∥

∥ ≤ M0e
β0t, ∀t ≥ 0.

Since BKw+Bw = 0, the state-space representation of the
closed-loop system (14) can be rewritten as

ẋ = (A+BK)x+BKwe,

ė = −LBwe− ẇ.
(16)

Denote h0 := − εβ0

2M0‖BKw‖ . In terms of Corollary 1,

lim
t→∞

e(t) = 0. Thus, for any ε > 0, there exists T0 such

that ‖e(t)‖ ≤ h0 while t ≥ T0. Similar to the proof of
Corollary 1, we have
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‖x(t)‖ ≤‖e(A+BK)(t−T0)x(T0)‖

+

∫ t

T0

‖e(A+BK)(t−τ)BKwe‖dτ

≤M0e
β0(t−T0)‖x(T0)‖

+ h0‖BKw‖M0

∫ t

T0

‖eβ0(t−τ)‖dτ

≤M0Heβ0(t−T0) −
h0‖BKw‖M0

β0

(

1− eβ0(t−T0)
)

=−
h0‖BKw‖M0

β0

+

(

M0H −
h0‖BKw‖M0

β0

)

eβ0(t−T0).

(17)

In terms of h0 = − εβ0

2M0‖BKw‖ , we have

−
h0‖BKw‖M0

β0
=

ε

2
. (18)

Furthermore, while t ≥ T0 +
1
β0

ln
(

ε
2M0H+ε

)

,

(

M0H −
h0‖BKw‖M0

β0

)

eβ0(t−T0) ≤
ε

2
. (19)

Therefore, for any given ε > 0, there exists T =

max
{

T0, T0 +
1
β0

ln
(

ε
2M0H+ε

)}

such that ‖x(t)‖ ≤ ε

while t ≥ T0. Thus, lim
t→∞

x(t) = 0.

Remark 4. The condition R(Bw) ⊆ R(B) in Theorem 2
and Corollary 1 indicates that the disturbance w(t) has no
direct influence on the system dynamics.

Remark 5. Due to Theorem 2, the disturbance w(t) can
be compensated completely via lim

t→∞
ẇ(t) = 0.

The proposed algorithm aims to guarantee robust stability
of the closed-loop systems with respect to (decaying or
non-decaying) disturbances. While Assumption 3 is sat-
isfied, the steps to design a quasi full information state-
feedback control law based on disturbance observers are
as follows:

(1) Choose Kw such that BKw +Bw = 0,
(2) Choose L such that −LBw is Hurwitz,
(3) Choose K such that A+BK is Hurwitz,

i.e., the parameter (Kw,K, L) can be designed separately
while Assumption 1-3 are satisfied.

Remark 6. The output in integral controllers of single-
input single-output systems is directly proportional to the
integral of the error signal. Thus, integral controller can
return the controlled variable back to the exact set point
following a disturbance. However, integral controller will
change the order of the system, and has tendencies to make
a system slower and the phase margin smaller. Adding
integral control of a system may sacrifice the speed of the
response, other performance measures, and even stability,
for the sake of steady state error.

Instead, the proposed scheme works for multi-input multi-
output systems, has no direct influence on the system
dynamics and can be designed independently.

t

x

t

u

0 2 4 6 8 10 12

0 2 4 6 8 10 12

−4.5
−4

−3

−2

−1

0

1

2

3

Figure 2. State and input trajectories for the initial state
x(0) = 3 and w(t) ≡ 0.5. Solid line: with quasi
full information control law, dashed line: with LQR
control law.

5. SIMULATION RESULTS

In order to demonstrate the effectiveness of the proposed
scheme, two examples are considered here. One is a numer-
ical example, the other is the stability control of four-wheel
steering vehicle.

5.1 Input perturbations

Consider the system described by

ẋ(t) = x(t) + 4u(t) + w(t), (20)

which is an open-loop unstable linear system with x(t),
u(t), w(t) ∈ R1. Assume that x can be measured in-
stantaneously. The disturbance w(t) is an unknown input
perturbation.

Design a linear quadratic regulator (LQR) control law for
the nominal system ẋ(t) = x(t) + 4u(t) with weighting
matrices Q = 1 and R = 1. The obtained linear state
feedback control matrix and the Lyapunov matrix are
K = −1.2808 and P = 0.3202, respectively.

For Bw = 1 and B = 4, the disturbance compensation
gain is chosen as Kw = −0.25. Since the dynamics of
the disturbance estimation error are ė = −Le− ẇ, choose
L = 0.25 such that −LBw is Hurwitz and the control law
is not aggressive.

The system trajectory starting from x(0) = 3 with LQR
control law, and with quasi full information control law for
system (20) are displayed in Fig.2, where the disturbance
w(t) ≡ 5 for all t ≥ 0. From Fig.2, we know that the
system with LQR control law is ultimately bounded, and
the system state will converge to the equilibrium while the
proposed quasi full information control law is adopted.

Fig.3 shows that the system with the proposed scheme
has the same dynamic as with LQR control law while
the disturbance w(t) ≡ 0 for all t ≥ 0, i.e., there is no
disturbance at all.

5.2 Stability control of four-wheel steering vehicles

As a key technology of the advanced safety vehicle aiming
to improve stability and maneuverability, stability control
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Figure 3. State and input trajectories for the initial state
x(0) = 3 and w(t) ≡ 0. Solid line: with quasi
full information control law, dashed line: with LQR
control law.

of four-wheel steering vehicles have been studied inten-
sively (Hiraoka et al., 2004; Wang et al., 2016). The pur-
pose is to improve the control safety of four-wheel steering
(4WS) vehicle with respect to cross-wind disturbances.

Assume that a vehicle with constant velocity moves with
only two degree of freedom: lateral displacement and yaw
rotation. The vehicle model considered is shown in Fig.??,
where the body frame is fixed at the vehicle’s center of
gravity (CG).

Figure 4. Diagram of 2 degree-of-freedom vehicle model

The following list describes the symbols used here.

β: sideslip angle
r: yaw rate of vehicle at CG
v: vehicle longitudinal velocity
m: vehicle mass
ms: sprung mass
a: longitudinal distance from the front axle to CG
b: longitudinal distance from the rear axle to CG
lw: the horizontal distance from the point crosswind
force acting to CG
Iz : yaw inertia moment
kϕ: roll stiffness of vehicle suspension
kf : cornering stiffness of front wheel
kr: cornering stiffness of rear wheel
δf : the steering angles of the front wheels
δr: the steering angles of the rear wheels
Ff : the front lateral tyre force
Fr : the rear lateral tyre force

The key parameters of 4WS vehicle model used in this
paper are as follows (Zhang, 2007): m = 1500kg, ms =
1300kg, Iz = 6000kg ·m2, lw = 0.2m, a = 1.1m, b = 1.4m,
kϕ = 47250N/rad, kf = 64000N/rad, kr = 52000N/radr.

Assume that β is small and v varies slowly, the front slip
angle αf and the rear slip angle αr can be derived by

αf = −β −
ar

v
+ δf ,

αr = −β +
br

v
+ δr.

(21)

As shown in Fig.??, the coordinate frame is fixed at the
vehicle’s CG. In terms of Newton’s second law, the vehicle
dynamic equations can be written as

mv(β̇ + r) = Ff + Fr,

Iz ṙ = aFf − bFr.
(22)

While the tyre slip angle is small, the front and rear lateral
tyre forces vary linearly with their slip angles

Ff = kfαf ,

Fr = krαr.
(23)

Denote x = [β r]T as the state vector, u = [δf δr]
T the

input vector. From (21) and (22), the state space model of
the linear 4WS vehicle model is

ẋ = Ax+Bu, (24)

where

A =

[

−
kf+kr

mv

bkr−akf

mv2 − 1
bkr−akf

Iz
−

a2kf+b2kr

Izv

]

, B =

[

kf

mv
kr

mv
akf

Iz
− bkr

Iz

]

.

Taking the exogenous disturbances caused by the cross-
wind into account, Eq.(22) can be rewritten as

mv(β̇ + r) = Ff + Fr + Fw,

Iz ṙ = aFf − bFr + Fwlw.
(25)

The stationary wind force

Fw =
1

2
ρCFAcv

2
w,

where ρ is the air density, Ac is the characteristic area of
the vehicle, vw is the speed of the wind and CF is the
non-dimensional aerodynamic coefficient which is usually
a nonlinear function of the relative wind angle (Zhang,
2015). For simplification, in this paper, we choose ρ =
1.2258kg/m3, CF = 0.7 and Ac = 0.001m2.

Thus, the related state space representation is

ẋ = Ax+Bu+Bww, (26)

where w = Fw

mv
is the normalized disturbance input, and

Bw =
[

1 mvlw
Iz

]T

.

The purpose is to design a control law such that the effect
of the crosswind is attenuated or compensated while the
vehicle is driving at a high speed. That is, the sideslip
angle β and the yaw rate r of vehicle at CG are as small
as possible with respect to the crosswind.

Since the matching condition R(Bw) ⊆ R(B) is satisfied
for the linear 4WS vehicle model, the quasi full information
control law is designed. Firstly, a linear quadratic regulator
control law is designed for the nominal system (24) with
Q = I2 and R = 2 × I2, where I2 is 2-dimensional
identity matrix. The obtained linear control law is K =
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Figure 5. Comparison of side slip angle and yaw rate, dash-
dotted line: with traditional LQR, solid line: with the
proposed scheme.

[

−0.0186 0.4751
0.2397 −0.5067

]

. Choose the disturbance observer as

L = [0.5000 0.1667] which can guarantee that −LBw is
Hurwitz. In order to compensate the effect of wind, choose

Kw =

[

−0.9000
−0.6231

]

such that BKw +Bw = 0.

Fig.4 compares sideslip angle and yaw rate at CG of the
4WS vehicle when driving with the speed of the vehicle
v = 30m/s, the speed of the wind vw = 10m/s and the

initial state x(0) = [0 0]
T
. The sideslip angle of the vehicle

with the traditional LQR is greater than 7o sometime
which causes the vehicle losing stability (van Zanten,
2000). However, the sideslip angle of the vehicle with the
proposed control law stays in the interval β ∈ [−2o 2o].

6. CONCLUSIONS

This paper was concerned with control of linear continuous-
time systems with respect to exogenous disturbances. The
control law is a composition of state and disturbance
feedback controls, where the disturbances is estimated by
a disturbance observer. Furthermore, the state feedback
control law, observer gain and disturbance compensation
gain can be designed respectively. It was shown that the
influence of disturbances on system dynamics can be com-
pensated if the matching condition is satisfied.
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